Addendum to “Semiprime Goldie centralizers”
نویسندگان
چکیده
منابع مشابه
Centralizers on semiprime rings
The main result: Let R be a 2-torsion free semiprime ring and let T : R → R be an additive mapping. Suppose that T (xyx) = xT (y)x holds for all x, y ∈ R. In this case T is a centralizer.
متن کاملOn Semiprime Right Goldie Mccoy Rings
In this note we first show that for a right (resp. left) Ore ring R and an automorphism σ of R, if R is σ-skew McCoy then the classical right (resp. left) quotient ring Q(R) of R is σ̄-skew McCoy. This gives a positive answer to the question posed in Başer et al. [1]. We also characterize semiprime right Goldie (von Neumann regular) McCoy (σ-skew McCoy) rings.
متن کاملCentralizers on prime and semiprime rings
The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let R be a noncommutative prime ring of characteristic different from two and let S and T be left centralizers on R. Suppose that [S(x), T (x)]S(x) + S(x)[S(x), T (x)] = 0 is fulfilled for all x ∈ R. If S 6= 0 (T 6= 0) then there exists λ from the extende...
متن کاملOn Θ-centralizers of Semiprime Rings (ii)
The following result is proved: Let R be a 2-torsion free semiprime ring, and let T : R → R be an additive mapping, related to a surjective homomorphism θ : R → R, such that 2T (x2) = T (x)θ(x) + θ(x)T (x) for all x ∈ R. Then T is both a left and a right θ-centralizer.
متن کاملAn identity related to centralizers in semiprime rings
The purpose of this paper is to prove the following result: Let R be a 2torsion free semiprime ring and let T : R → R be an additive mapping, such that 2T (x) = T (x)x + xT (x) holds for all x ∈ R. In this case T is left and right centralizer.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 1976
ISSN: 0021-2172,1565-8511
DOI: 10.1007/bf02762941